
INSTALL
HYPERLEDGER

FABRIC 2.1 EVM
USER GUIDE

How to install Hyperledger Fabric EVM
chaincode onto the latest release of
Hyperledger Fabric (v2.1).

BY ADAM BRINCKMAN
Senior Architect, SIMBA Chain and Senior Research
Programmer/Product Owner,Center for Research
Computing at the University of Notre Dame

2

This guide is written for developers who want to install Hyperledger Fabric EVM chaincode onto the latest release of
Hyperledger Fabric (at the time of this writing is version 2.1). The reason I am writing this article is because the official
documentation provides examples for installing onto version 1.4 which is different from the process of installing to a
2.1 network.

It is assumed the reader has plenty of experience writing and compiling Solidity smart contracts and knows how to get
their hands on the compiled bytecode, plus any other artifacts normally required for deploying smart contracts onto the
Ethereum network. The process of compiling Solidity will not be explained. It is also assume the reader has at least a
basic understanding of IBM’s Hyperledger Fabric and has already installed Fabric 2.1 (if you haven’t then please follow
this documentation to install all of the binaries and docker images).

WHAT IS FABRIC EVM CHAINCODE AND WHY WOULD YOU WANT TO INSTALL IT ONTO A FABRIC PEER?
Fabric EVM chaincode (evmcc) makes it possible to execute EVM based instructions on Hyperledger Fabric. This means
that you can interact with Fabric in exactly the same way you would interact with Ethereum. If you’d like to know more
about how this works, you can read all about it in this article. Without going into too much detail, the chaincode imports
components from Hyperledger Burrow (a new proof-of-authority EVM ledger) which is able to interpret the Solidity
code stored on the Fabric ledger. When a Solidity smart contract method is invoked, the code is fetched from the Fabric
ledger and loaded into memory, then the Burrow EVM is called to interpret and execute the invoked method.

CHECK PREREQUISITES
Before we begin, do a quick sanity check to make sure Fabric 2.1 is installed correctly:

```bash 
docker images | grep hyperledger

````

```bash 
peer version

```

You should see your peer version is at 2.1 and all images tagged with 2.1 (It is okay to see fabric-ca 1.4.7 as this is the
latest release of fabric-ca).

If you don’t already have a network running, you can use the sample test network that comes packaged with github.
com/hyperledger/fabric-samples. Simply navigate to test-network and execute the following commands to bring up the
network and create a channel:

```bash 
./network.sh up 
./network.sh createChannel <channel_name>

```

Next, clone the Fabric EVM chaincode repository (if you’re curious, the actual chaincode can be found in evmcc/evmcc.go):

```bash 
git clone https://github.com/hyperledger/fabric-evm-chaincode.git

```

The first thing we are going to do is vendor all of the chaincode dependencies. This will resolve all code dependencies
for the evmcc.go module. This will ensure that when we package the chaincode in the next step, we don’t exclude any
dependencies which would cause the installation to fail at a later step. To do this, run these commands:

```bash 
cd fabric-evm-chaincode/evmcc 
GO111MODULE=on go mod vendor

```

https://hyperledger-fabric.readthedocs.io/en/latest/install.html
https://hyperledger-fabric.readthedocs.io/en/latest/install.html
https://github.com/hyperledger/fabric-chaincode-evm

3

CONFIGURE THE CORE PEER
Next, we need to configure the peer CLI to operate on the core peer for your organization. To do this, select a peer that
you want to act as the core peer (this is an arbitrary selection), then define the following environment variables:

(NOTE: This is just an example!! You’ll need to set your peer accordingly.)

```bash 
export FABRIC_CFG_PATH=<path to directory containing the core.yaml configuration> 
export CORE_PEER_TLS_ENABLED=<true | false> 
export CORE_PEER_LOCALMSPID=<your org’s MSP ID> 
export CORE_PEER_TLS_ROOTCERT_FILE=<path to core peer’s TLS CA cert> 
export CORE_PEER_MSPCONFIGPATH=<path to core peer admin user’s MSP> 
export CORE_PEER_ADDRESS=<peer address> 
export ORDERER_CA=<path to orderer’s /msp/tlscacerts/tlsca.pem file>

```

(HINT: If you are using the sample-network, then you will need to create two environment profiles! Each of the two
organizations will have its own core peer. My suggestion would be to create a profile for each peer so you can easily
switch between environments. This way you can run the peer cli command, switch profiles, and run the same command
again to target the other peer.)

PACKAGE THE CHAINCODE
Navigate to fabric-evm-chaincode/evmcc directory (if not already there) and package the chaincode into a tar.gz file:

```bash 
peer lifecycle chaincode package evmcc.tar.gz -p . -l golang --label evmcc_1

```

Please note the label name is `evmcc_1` with the number 1 at the end. In a later step, we will specify the sequence
number for this chaincode definition. The sequence must start at 1, so to be clear, we will label our chaincode using the
format <name_sequence>.

(If you’re curious about what a Fabric lifecycle is and would like to know more, please read this article. This may be very
useful to know if in the future you would like to upgrade the chaincode or install different versions.)

INSTALL THE CHAINCODE
```bash 
peer lifecycle chaincode install evmcc.tar.gz

```

This will install the chaincode at version 1.

(HINT: Again, if you are on the sample-network, switch to the other profile for the other core peer and run the above
command again! Be careful to switch profiles each time you do this!)

QUERY THE PEER FOR THE PACKAGE ID.
We will need this package ID in subsequent steps.

```bash 
PACKAGE_ID=$(peer lifecycle chaincode queryinstalled | sed -n “/evmcc_1/{s/^Package ID: //; s/, 
Label:.*$//; p;}”)

```

https://hyperledger-fabric.readthedocs.io/en/release-2.0/chaincode_lifecycle.html
https://hyperledger-fabric.readthedocs.io/en/release-2.0/chaincode_lifecycle.html

4

APPROVE THE CHAINCODE FOR YOUR ORGANIZATION:
Your organization must first approve the chaincode before it can be installed on any one of its peers. This is true for all
chaincode installations.

```bash 
peer lifecycle chaincode approveformyorg -o <Orderer’s Address> --ordererTLSHostnameOverride <Orderer’s 
Hostname> --tls --cafile $ORDERER_CA --channelID <channel name> --name evmcc --version 1 --init-
required --package-id ${PACKAGE_ID} --sequence 1

```

Switch profiles and run the above command again for the second organization.

CHECK TO SEE THAT THE CHAINCODE IS READY TO BE COMMITTED TO THE PEER:
```bash 
peer lifecycle chaincode checkcommitreadiness --channelID <channel_name> --name evmcc --version 1 
--sequence 1 --output json --init-required

```

If all is going well so far, you should see that your organization has approved the chaincode to be committed to the ledger.

CONFIGURE THE TARGET PEERS TO RECEIVE THE CHAINCODE:
```bash 
export PEER_CONN_PARMS=”--peerAddresses <peer Address> --tlsRootCertFiles <path to peer’s tls/ca.crt>”

```

(NOTE: If using sample-network, append the address and root cert files of the second peer. You will have two
--peerAddresses, and two --tlsRootCertFiles)

COMMIT THE CHAINCODE
After you have targeted the peers that will receive the chaincode, go ahead and commit the chaincode:

```bash 
peer lifecycle chaincode commit -o <orderer Address> --ordererTLSHostnameOverride <orderer hostname> 
--tls --cafile $ORDERER_CA --channelID <channel_name> --name evmcc $PEER_CONN_PARMS --version 1 
--sequence 1 --init-required

```

QUERY THE PEER(S) TO CHECK IF THE CHAINCODE
HAS BEEN SUCCESSFULLY COMMITTED:
```bash 
peer lifecycle chaincode querycommitted --channelID <channel_name> --name evmcc

```

INSTANTIATE THE CHAINCODE
Finally, invoke the chaincode’s constructor to instantiate itself. After this step, the chaincode should be fully deployed
and ready to go:

```bash 
peer chaincode invoke -o <orderer Address> --ordererTLSHostnameOverride <orderer hostname> --tls 
--cafile $ORDERER_CA -C <channel_name> -n evmcc $PEER_CONN_PARMS --isInit -c ‘{“Args”:[]}’

```


5

To test if all went well, you follow this guide. Skip ahead past installing the evmcc and pick up where it begins to create
a contract and make smart method calls. Since the instructions were written for the 1.4 network, you will need to modify
the commands slightly to work for 2.1. The main difference is that you’ll need to target the endorsing peers. Here is an
example of how to deploy a smart contract for 2.1:

(NOTE: This is just an example, you’ll need to set your peer’s cert file and address accordingly.)

```bash 
peer chaincode invoke -o <orderer address> --ordererTLSHostnameOverride <orderer host> --tls --cafile 
$ORDERER_CA -C mychannel -n evmcc  --peerAddresses localhost:7051 --tlsRootCertFiles $PEER0_ORG1_CA 
--peerAddresses localhost:9051 --tlsRootCertFiles $PEER0_ORG2_CA -c ‘{“Args”:[“000000000000000000000000 
0000000000000000”,”608060405234801561001057600080fd5b5060df8061001f6000396000f3006080604052600436106049 
5760003  57c0100000000000000000000000000000000000000000000000000000000900463ffffffff16806360fe47b114604e 
5780636d4ce63c146078575b600080fd5b348015605957600080fd5b50607660048036038101908080359060200190929190505 
05060a0565b005b348015608357600080fd5b50608a60aa565b6040518082815260200191505060405180910390f35b80600081 
90555050565b600080549050905600a165627a7a723058203dbaed52da8059a841ed6d7b484bf6fa6f61a7e975a803fdedf076a 
121a8c4010029”]}’

```

If you were able to create and deploy a smart contract using Fabric EVM, then congratulations! You’ve now successfully
installed the chaincode onto version 2.1 of Hyperledger’s Fabric.

WHERE SHOULD YOU GO FROM HERE?
If you want to be able to use web3 tools to interact with Fabric EVM then we
would suggest building and configuring the Fab3 proxy and connecting this to
the same anchor peer that has the installed chaincode. The Fab3 proxy accepts
as input gRPC API calls exactly as you would send them to an ethereum peer,
and translates these calls into peer cli commands. In this way you can treat the
Fab3 proxy as an ethereum peer.

5

https://github.com/hyperledger/fabric-chaincode-evm

SIMBA Chain enables seamless utilization and integration
of blockchain technology to bolster trust, security, and
risk mitigation for enterprise and government info@simbachain.com

574-914-4446

simbachain.com

